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2 Introduction

What are noncommutative rational functions?

Rational functions in several noncommuting variables
(as opposed to the “usual” rational functions in several
commuting variables).

Examples:

• z1z2

• z2z1

• 1 + (z−1
1 z2 + z−1

2 z1)
−1

• z1z2(z1z2 − z2z1)
−1 = 1 + z2z1(z1z2 − z2z1)

−1

Some difficulties:

• Unlike in the commutative case, the “minimal com-
plexity” of an expression defining a given noncommu-
tative rational function can be arbitrarily high; there
is nothing similar to a coprime fraction representa-
tion.

• It is not clear when two different expressions define
the same noncommutative rational function

This reflects a familiar difficulty in noncommutative alge-
bra: constructing a skew field of fractions of a noncommu-
tative integral domain (in this case, the domain of non-
commutative polynomials) is a non-trivial issue (a skew
field of fractions does not necessarily exist, and when it
does, it is not necessarily unique).
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However, these difficulties can be resolved, and in many
instances noncommutative rational functions behave in
a much simpler way than rational functions in several
commuting variables (much more like rational functions
in a single variable). Furthermore, noncommutative ra-
tional functions occur in many areas of system theory:

• First appearence in the context of rational and rec-
ognizable formal power series in noncommuting vari-
ables in the theory of formal languages and finite
automata (Kleene, Schützenberger, Fliess).

• More recently, state space realizations of rational ex-
pressions in Hilbert space operators (modelling struc-
tured possibly time varying uncertainty) have figured
prominently in work on robust control of linear sys-
tems (Beck, Beck–Doyle–Glover, Lu–Zhou–Doyle).

• Another important application: Linear Matrix In-
equalities (LMIs) in the context of dimension-inde-
pendent problems, i.e., where the natural variables
are matrices and the problem involves rational ex-
pressions in these matrix variables.

• Last but not least, in many situations one can es-
tablish a commutative result by “lifting” to the non-
commutative setting, applying the noncommutative
theory, and then “descending” again to the commu-
tative situation.
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Purpose of this talk: publicity for noncommutative ra-
tional functions.

More specifically, I will

(1) survey the basic concepts of the theory of noncom-
mutative rational functions,

(2) their realization theory, and

(3) their applications to LMIs.

Important remark: the NCAlgebra software,
http://www.math.ucsd.edu/ ∼ ncalg,

implements many symbolic algorithms in the noncommu-
tative setting.
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We start with noncommutative polynomials in d non-
commuting variables z1, . . . , zd over the field R of real
numbers (R can be replaced for most purposes by any
field K, though a little bit of care is necessary, especially
in case of finite fields).

Example: a noncommutative polynomial of total degree
2 in 2 variables z1, z2 is of the form

a + bz1 + cz2 + dz2
1 + ez1z2 + fz2z1 + gz2

2,

where the coefficients a, b, c, d, e, f, g ∈ R.

Noncommutative polynomials form an algebra R〈z1, . . . , zd〉
over R, often called the free associative algebra on d gen-
erators z1, . . . , zd.

We can evaluate a noncommutative polynomial p ∈ R〈z1, . . . , zd〉
on a d-tuple Z1, . . . , Zd of n× n matrices over R, for any
n, yielding a n×n matrix p(Z1, . . . , Zd). A non-zero poly-
nomial can vanish on tuples of matrices of a certain size;
e.g., z1z2−z2z1 vanishes on 1×1 matrices (scalars). How-
ever, if p(Z1, . . . , Zd) = 0 for all d tuples of matrices of all
sizes, then necessarily p is the zero polynomial.
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We next define noncommutative rational expressions by
applying successive arithmetic operations to noncommuta-
tive polynomials. A noncommutative rational expression
r can be evaluated on a d-tuple Z1, . . . , Zd of n×n matri-
ces in its domain of regularity dom r, which is defined as
the set of all d-tuples of matrices of all sizes such that all
the inversions involved in the calculation of r(Z1, . . . , Zd)
exist.

Example: if r = (z1z2−z2z1)
−1 then dom r = {(Z1, Z2) :

det(Z1Z2 − Z2Z1) 6= 0}.
We assume that dom r 6= ∅, in other words, when form-

ing noncommutative rational expressions we never invert
an expression that is nowhere invertible.

Two noncommutative rational expressions r1 and r2 are
called equivalent if dom r1∩dom r2 6= ∅ and r1(Z1, . . . , Zd) =
r2(Z1, . . . , Zd) for all (Z1, . . . , Zd) ∈ dom r1 ∩ dom r2.

Example: r1 = z1z2(z1z2 − z2z1)
−1 and r2 = 1 +

z2z1(z1z2 − z2z1)
−1 are equivalent.
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We define a noncommutative rational function to be an
equivalence class of noncommutative rational expressions.
We usually denote noncommutative rational functions by
German (Fraktur) letters; we define the domain of reg-
ularity of a noncommutative rational function r as the
union of the domains of regularity of all noncommutative
rational expressions representing this function, i.e.,

dom r = ∪r∈r dom r.

Notice that for any d-tuple (Z1, . . . , Zd) ∈ dom r of n×n
matrices, the evaluation r(Z1, . . . , Zd) is a well defined
n× n matrix.

Any nonzero noncommutative rational function is invert-
ible; i.e., noncommutative rational functions form a skew
field — a skew field of fractions (in fact, the universal skew
field of fractions) of the ring of noncommutative polyno-
mials. (This means that, e.g., if p is a noncommutative
polynomial and det p(Z1, . . . , Zd) = 0 for all d tuples of
matrices of all sizes, then necessarily p is the zero polyno-
mial.)
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We also introduce matrix-valued noncommutative ratio-
nal expressions and matrix-valued noncommutative ratio-
nal functions. The only difference is that we start with
matrix-valued noncommutative polynomials (having ma-
trix rather than scalar coefficients) and use tensor substi-
tutions for evaluations on tuples of matrices.

Example:

r1 =
[
1 0

] [
1− z1 −z2

−z2 1− z1

]−1 [
1
0

]
,

r2 = (1− z1 − z2(1− z1)
−1z2)

−1,

and

r3 = −z−1
2 (1− z1)(z2 − (1− z1)z

−1
2 (1− z1))

−1

are equivalent, and we have

dom r1 =

{
(Z1, Z2) : det

[
1− Z1 −Z2

−Z2 1− Z1

]
6= 0

}
,

dom r2 = {(Z1, Z2) : det(1− Z1) 6= 0,

det(1− Z1 − Z2(1− Z1)
−1Z2) 6= 0},

dom r3 = {(Z1, Z2) : det(Z2) 6= 0,

det(Z2 − (1− Z1)Z
−1
2 (1− Z1)) 6= 0}.
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A noncommutative multidimensional system is a system
with evolution along the free semigroup Fd on d letters
g1, . . . , gd rather than along the multidimensional integer
lattice Zd. An example of system equations with evolution
along Fd is given by

(1)


x(g1w) = A1x(w) + B1u(w)

...
x(gdw) = Adx(w) + Bdu(w)

y(w) = Cx(w) + Du(w)

where the variable w = gin . . . gi1 is a word in the symbols
g1, . . . , gd, i.e., a generic element of the free semigroup Fd.

Applying to the system equations (1) an appropriately
defined formal noncommutative z-transform and under the
assumption that the state of the system is initialized at 0,
we arrive at the input-output relation

ŷ(z) = TΣ(z)û(z)

where the transfer function is given by
(2)
TΣ(z) = D+C(I−A1z1−· · ·−Adzd)

−1(B1z1+· · ·+Bdzd).

We see that the transfer function is a matrix-valued non-
commutative rational function in noncommuting variables
z1, . . . , zd which is regular at zero, i.e., zero belongs to
its domain of regularity (a little more precisely, the trans-
fer function is the matrix-valued noncommutative rational
function defined by the matrix-valued noncommutative ra-
tional expression (2)).
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Foundational facts of the noncommutative realization
theory:

(1) Every matrix-valued noncommutative rational func-
tion which is regular at zero admits a state space
realization (2).

(2) An arbitrary realization of a given matrix-valued non-
commutative rational function can be reduced via an
analogue of the Kalman decomposition to a control-
lable and observable realization.

(3) A controllable and observable realization is minimal,
i.e., it has the smallest possible state space dimen-
sion, and is unique up to a unique similarity.

(4) A minimal realization can be constructed canonically
and explicitly from a matrix-valued noncommutative
rational function by means of the corresponding Han-
kel operator; this ties in with the fact that the Hankel
operator corresponding to a matrix-valued noncom-
mutative formal power series has finite rank if and
only if the power series represents a rational function
(an analogue of Kronecker’s Theorem).

(5) In a minimal realization, the singularities of the trans-
fer function coincide with the singularities of the re-
solvent; more precisely, the domain of regularity of
the transfer function is exactly

{(Z1, . . . , Zd) : det(I − A1 ⊗ Z1 − · · · − Ad ⊗ Zd) 6= 0}.
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Items 1–4 are due to Ball–Groenewald–Malakorn, in a
more general setting of structured noncommutative mul-
tidimensional systems (they go back to Kleene, Schützen-
berger, and Fliess in the setting of recognizable formal
power series).

Item 5 is amazingly difficult to prove “by hands”; the
classical d = 1 proof uses the Jordan canonical form for
A = A1, but this is of course no longer available. A recent
proof by Kaliuzhnyi-Verbovetskyi–Vinnikov uses noncom-
mutative backward shifts which are a particular instance
of a difference-differential calculus for noncommutative ra-
tional functions. This is a special case of a difference-
differential calculus for general noncommutative functions,
which are functions on tuples of matrices of all sizes which
respect direct sums and simultaneous similarities.
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Most optimization problems appearing in systems and
control are dimension-independent in that the natural
variables are matrices (rather than just collections of scalars)
and the problem involves rational expressions in these ma-
trix variables (rather than arbitrary expressions in the ma-
trix entries).

In a dimension-independent problem, we are given a con-
vex set Sn of d-tuples of n × n real symmetric matrices
for each n. We seek a noncommutative LMI representa-
tion of the collection S = {Sn}∞n=1, i.e., an affine linear
matrix-valued noncommutative polynomial

(3) L = L0 + L1z1 + · · · + Ldzd

with real symmetric coefficients such that

Sn = {(Z1, . . . , Zd) ∈ (SRn×n)d : L(Z1, . . . , Zd) � 0}
for all n. Here SRn×n denotes n×n real symmetric matri-
ces, and A � B means that A−B is positive semidefinite.

The sets Sn are supposed to be defined by some matrix-
valued noncommutative polynomial or rational inequali-
ties (the same inequalities for all n, i.e., we are evaluating
the same matrix-valued noncommutative polynomials or
rational functions on matrices of different sizes), and a
rough conjecture is that in this noncommutative setting
LMI representations always exist.
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Strong evidence (Helton–McCullough–Vinnikov): sub-
level sets of symmetric noncommutative rational functions
that are convex near zero admit noncommutative LMI rep-
resentations.

More precisely, let r be a noncommutative rational func-
tion which is regular at zero. Assume that r is symmetric
(meaning that r(Z1, . . . , Zd) is symmetric for all symmet-
ric d-tuples (Z1, . . . , Zd) ∈ dom r) and convex near zero
(meaning that

r(tX1 + (1− t)Y1, . . . , tXd + (1− t)Yd) �
tr(X1, . . . , Xd) + (1− t)r(Y1, . . . , Yd)

for all 0 ≤ t ≤ 1 and all d-tuples (X1, . . . , Xd), (Y1, . . . , Yd)
of symmetric matrices of all sizes with X2

1 + · · ·+X2
d , Y

2
1 +

· · · + Y 2
d ≺ εI for some ε > 0).

Then (for any γ > r(0)) the collection of connected com-
ponents of zero of the sets

Sn = {(Z1, . . . , Zd) ∈ (SRn×n)d ∩ dom r :

r(Z1, . . . , Zd) ≺ γIn}
admits a noncommutative LMI representation.

The proof uses state space realizations of noncommuta-
tive rational functions in an essential way. In fact, the LMI
representation is constructed from the realization of r.


